Com­pu­ta­tio­nal Toxi­co­lo­gist (m/f/d)

Vollzeit @Rand­stad veröffentlicht 18 Stunden ago

Job-Beschreibung

Job­de­scrip­ti­on

For our cli­ent, a lea­ding com­pa­ny in the phar­maceu­ti­cal sec­tor, we are see­king a Com­pu­ta­tio­nal Toxi­co­lo­gist to help our cli­ent deve­lop inno­va­ti­ve, AI-powered solu­ti­ons that pre­dict toxi­co­lo­gi­cal risks and trans­la­te data into actionable insights.

This is your oppor­tu­ni­ty to be part of a high­ly inter­di­sci­pli­na­ry team that bridges chem­in­for­ma­tics, data sci­ence, toxi­co­lo­gy, and drug deve­lo­p­ment. You will app­ly sta­te-of-the-art machi­ne lear­ning to address cri­ti­cal safe­ty ques­ti­ons and actively con­tri­bu­te to the inte­gra­ti­on of diver­se data types-inclu­ding che­mi­cal struc­tures, in vitro assay data, and evol­ving omics rea­douts.
In addi­ti­on to model deve­lo­p­ment, you will work clo­se­ly with dis­co­very pro­ject teams to pro­vi­de in sili­co safe­ty assess­ments and sci­en­ti­fic sup­port. You’ll help reu­se his­to­ri­cal data to inform cur­rent pro­grams and col­la­bo­ra­te with col­le­agues across depart­ments to iden­ti­fy pain points and deve­lop impactful solu­ti­ons.

Gene­ral Infor­ma­ti­on:

  • Start date: ASAP
  • Latest Start Date: Sep­tem­ber 2025
  • Plan­ned dura­ti­on: 1 year
  • Exten­si­on: not likely
  • Work­place: Basel
  • Workload: 100%
  • Home Office: limi­t­ed, 51% onsite mini­mum
  • Working hours: Stan­dard

Tasks & Respon­si­bi­li­ties:

  • Design, deve­lop, and app­ly machi­ne lear­ning models to pre­dict safe­ty-rele­vant end­points (e.g., liver or kid­ney toxi­ci­ty) using che­mi­cal struc­tu­re and bio­lo­gi­cal data.
  • Inte­gra­te che­mo­in­for­ma­tics and in vitro safe­ty data, with the poten­ti­al to expand toward tran­scrip­to­mics or other omics tech­no­lo­gies.
  • Pro­vi­de in sili­co sup­port for dis­co­very and ear­ly deve­lo­p­ment pro­grams, offe­ring sci­en­ti­fic insights into poten­ti­al safe­ty risks.
  • Levera­ge inter­nal data and exter­nal know­ledge bases to enhan­ce model per­for­mance and inter­pr­e­ta­bi­li­ty.
  • Col­la­bo­ra­te clo­se­ly with toxi­co­lo­gists, phar­ma­co­lo­gists, data sci­en­tists, and che­mists to co-crea­te solu­ti­ons and ensu­re models are meaningful and rele­vant.
  • Con­tri­bu­te to broa­der efforts such as bio­lo­gi­cal read-across, rever­se trans­la­ti­on of his­to­ri­cal data, and refi­ne­ment of digi­tal work­flows for safe­ty decis­i­on-making.

Must Haves:

  • PhD or MSc (with rele­vant expe­ri­ence) in Com­pu­ta­tio­nal Toxi­co­lo­gy, Chem­in­for­ma­tics, Bio­in­for­ma­tics, Data Sci­ence, Phar­ma­co­lo­gy, or a rela­ted field.
  • Solid expe­ri­ence in deve­lo­ping machi­ne lear­ning models, ide­al­ly appli­ed to che­mi­cal and bio­lo­gi­cal data.
  • Strong foun­da­ti­on in cheminformatics/chemistry, inclu­ding working with mole­cu­lar descrip­tors, che­mi­cal simi­la­ri­ty, and struc­tu­re-based ana­ly­ses.
  • Expe­ri­ence with toxi­co­lo­gi­cal data­sets and safe­ty end­points such as DILI or neph­ro­to­xi­ci­ty.
  • Fami­lia­ri­ty with in vitro safe­ty data and an inte­rest in inte­gra­ting com­plex bio­lo­gi­cal data­sets.
  • Pro­fi­ci­ent in pro­gramming (e.g., Python, R) and using sci­en­ti­fic com­pu­ting libra­ri­es (e.g., RDKit, sci­kit-learn, Pan­das, Ten­sor­Flow, or simi­lar).
  • Excel­lent com­mu­ni­ca­ti­on and col­la­bo­ra­ti­on skills; able to trans­la­te tech­ni­cal insights for inter­di­sci­pli­na­ry teams.

Nice to Have:

  • Expe­ri­ence with toxi­co­lo­gi­cal data­sets and safe­ty end­points such as DILI or neph­ro­to­xi­ci­ty.
  • Under­stan­ding of omics data inte­gra­ti­on or bio­lo­gi­cal pathways rela­ted to toxi­co­lo­gy.
  • Fami­lia­ri­ty with phar­maceu­ti­cal R&D or pri­or expe­ri­ence in indus­try (a plus, but not essen­ti­al).

Verwandte Jobs