Doc­to­ral Can­di­da­te In Com­pu­ter Visi­on And Machi­ne Lear­ning For Deve­lo­ping Novel

Vollzeit @Uni­ver­si­tät Zürich veröffentlicht 1 Tag ago

Job-Beschreibung

Your respon­si­bi­li­ties

The suc­cessful can­di­da­te will work on a pro­ject in the Eco­Vi­si­on Lab in coope­ra­ti­on with col­le­agues at Empa and Wagen­in­gen Uni­ver­si­ty on deve­lo­ping novel deep lear­ning methods for satel­li­te-based track­ing of glo­bal CO2 and NOX emis­si­ons of point sources (STEPS).

The next gene­ra­ti­on of polar-orbi­ting CO2 satel­li­tes will pro­vi­de images of CO2 and NO2 emis­si­on plu­mes from point sources with unpre­ce­den­ted accu­ra­cy, reso­lu­ti­on and covera­ge. The com­bi­na­ti­on of CO2 and NO2 mea­su­re­ments will thus enable the long-term moni­to­ring of the emis­si­ons from lar­ge point sources across the glo­be, which will be cri­ti­cal for track­ing pro­gress in redu­cing air pol­lu­ti­on and achie­ving net-zero emis­si­ons under the Paris Agree­ment. The vast num­ber of images acqui­red by the next gene­ra­ti­on of satel­li­tes and the lar­ge num­ber of obser­va­ble sources requi­res auto­ma­ted emis­si­on quan­ti­fi­ca­ti­on methods based on deep lear­ning.

STEPS will advan­ce deep lear­ning models to quan­ti­fy CO2 and NOX point source emis­si­ons from CO2 and NO2 ima­ging satel­li­tes. The pro­ject will gene­ra­te and publicly release an unpre­ce­den­ted libra­ry of high­ly rea­li­stic, glo­bal­ly repre­sen­ta­ti­ve satel­li­te images based on high-reso­lu­ti­on che­mi­cal trans­port simu­la­ti­ons. The deep lear­ning models will then be adapt­ed to real satel­li­te imagery to mini­mi­ze the domain gap. Once deve­lo­ped and tes­ted, the novel methods will be appli­ed to the next gene­ra­ti­on of polar and geo­sta­tio­na­ry satel­li­tes to moni­tor the CO2 and NOX emis­si­ons from power plants and indus­tri­al faci­li­ties. The STEPS pro­ject will estab­lish an advan­ced frame­work to deve­lop, vali­da­te and app­ly deep lear­ning models for emis­si­ons quan­ti­fi­ca­ti­on.

The pro­ject lea­ves amp­le room to explo­re various exci­ting tech­ni­cal ave­nues like self-super­vi­sed lear­ning, phy­sics-infor­med deep lear­ning, uncer­tain­ty quan­ti­fi­ca­ti­on, inter­pr­e­ta­bi­li­ty, and explaina­bi­li­ty in deep neu­ral net­works, atten­ti­on-based approa­ches, or dif­fu­si­on models, for exam­p­le. Over cour­se of the pro­ject, publi­ca­ti­ons are plan­ned at both, machi­ne lear­ning and com­pu­ter visi­on con­fe­ren­ces like CVPR, ICCV, ICLR, Neu­rIPS and jour­nals like Remo­te Sens­ing of Envi­ron­ment, the ISPRS Jour­nal or Natu­re Sus­taina­bi­li­ty.

Your pro­fi­le

We are loo­king for can­di­da­tes with an inte­rest in per­forming inno­va­ti­ve rese­arch, strong moti­va­ti­on, and an inte­rest in soft­ware deve­lo­p­ment. An ide­al can­di­da­te will have:

  • an excel­lent degree (. or equi­va­lent) in Com­pu­ter Sci­ence, Machi­ne Lear­ning, or a rela­ted field (e.g. Elec­tri­cal Engi­nee­ring, Appli­ed Mathe­ma­tics, Phy­sics)
  • strong under­stan­ding of maths and phy­sics
  • expe­ri­ence in pro­gramming, pre­fer­a­b­ly in Python
  • pri­or expe­ri­ence in machi­ne lear­ning, com­pu­ter visi­on and remo­te sens­ing and strong inte­rest to app­ly the­se skills to an inter­di­sci­pli­na­ry pro­ject

Fur­ther­mo­re, the can­di­da­te should be flu­ent in Eng­lish, both writ­ten and spo­ken.

What we offer

Our employees bene­fit from a wide ran­ge of attrac­ti­ve offers. More

Loca­ti­on

Depart­ment of Mathe­ma­ti­cal Mode­ling and Machi­ne Lear­ning (DM3L)

Infor­ma­ti­on on your appli­ca­ti­on

Plea­se sub­mit your com­ple­te appli­ca­ti­on (moti­va­ti­on let­ter, cur­ri­cu­lum vitae, school and uni­ver­si­ty score records, cont­act details of at least two refe­rees) via the link below. The dead­line for appli­ca­ti­ons isand the desi­red start­ing date isSel­ec­tion will start imme­dia­te­ly, so ear­ly sub­mis­si­ons are encou­ra­ged.

Fur­ther infor­ma­ti­on

Ques­ti­ons about the job

Prof. Jan Dirk Weg­ner
Pro­fes­sor

Working at UZH

The Uni­ver­si­ty of Zurich, Switzerland’s lar­gest uni­ver­si­ty, offers a ran­ge of attrac­ti­ve posi­ti­ons in various sub­ject are­as and pro­fes­sio­nal fields. With around 10,000 employees and curr­ent­ly 12 pro­fes­sio­nal app­ren­ti­ce­ship streams the Uni­ver­si­ty offers an inspi­ring working envi­ron­ment on cut­ting-edge rese­arch and top-class edu­ca­ti­on. Put your talent and skills to work with us. Find out more about UZH as an employ­er!

jid60412a6a jit1044a jiy25a

Verwandte Jobs